ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.08976
32
184

Speech2Vec: A Sequence-to-Sequence Framework for Learning Word Embeddings from Speech

23 March 2018
Yu-An Chung
James R. Glass
    3DV
ArXivPDFHTML
Abstract

In this paper, we propose a novel deep neural network architecture, Speech2Vec, for learning fixed-length vector representations of audio segments excised from a speech corpus, where the vectors contain semantic information pertaining to the underlying spoken words, and are close to other vectors in the embedding space if their corresponding underlying spoken words are semantically similar. The proposed model can be viewed as a speech version of Word2Vec. Its design is based on a RNN Encoder-Decoder framework, and borrows the methodology of skipgrams or continuous bag-of-words for training. Learning word embeddings directly from speech enables Speech2Vec to make use of the semantic information carried by speech that does not exist in plain text. The learned word embeddings are evaluated and analyzed on 13 widely used word similarity benchmarks, and outperform word embeddings learned by Word2Vec from the transcriptions.

View on arXiv
Comments on this paper