ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.08208
22
33

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

22 March 2018
Xiongwei Wu
Daoxin Zhang
Jianke Zhu
S. Hoi
    ObjD
ArXivPDFHTML
Abstract

Recent years have witnessed many exciting achievements for object detection using deep learning techniques. Despite achieving significant progresses, most existing detectors are designed to detect objects with relatively low-quality prediction of locations, i.e., often trained with the threshold of Intersection over Union (IoU) set to 0.5 by default, which can yield low-quality or even noisy detections. It remains an open challenge for how to devise and train a high-quality detector that can achieve more precise localization (i.e., IoU>>>0.5) without sacrificing the detection performance. In this paper, we propose a novel single-shot detection framework of Bidirectional Pyramid Networks (BPN) towards high-quality object detection, which consists of two novel components: (i) a Bidirectional Feature Pyramid structure for more effective and robust feature representations; and (ii) a Cascade Anchor Refinement to gradually refine the quality of predesigned anchors for more effective training. Our experiments showed that the proposed BPN achieves the best performances among all the single-stage object detectors on both PASCAL VOC and MS COCO datasets, especially for high-quality detections.

View on arXiv
Comments on this paper