ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.07482
16
10

Natural Gradient Deep Q-learning

20 March 2018
Ethan Knight
Osher Lerner
ArXivPDFHTML
Abstract

We present a novel algorithm to train a deep Q-learning agent using natural-gradient techniques. We compare the original deep Q-network (DQN) algorithm to its natural-gradient counterpart, which we refer to as NGDQN, on a collection of classic control domains. Without employing target networks, NGDQN significantly outperforms DQN without target networks, and performs no worse than DQN with target networks, suggesting that NGDQN stabilizes training and can help reduce the need for additional hyperparameter tuning. We also find that NGDQN is less sensitive to hyperparameter optimization relative to DQN. Together these results suggest that natural-gradient techniques can improve value-function optimization in deep reinforcement learning.

View on arXiv
Comments on this paper