ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.07427
11
171

Multimodal Sentiment Analysis: Addressing Key Issues and Setting up the Baselines

19 March 2018
Soujanya Poria
Navonil Majumder
Devamanyu Hazarika
Min Zhang
Alexander Gelbukh
Amir Hussain
ArXivPDFHTML
Abstract

We compile baselines, along with dataset split, for multimodal sentiment analysis. In this paper, we explore three different deep-learning based architectures for multimodal sentiment classification, each improving upon the previous. Further, we evaluate these architectures with multiple datasets with fixed train/test partition. We also discuss some major issues, frequently ignored in multimodal sentiment analysis research, e.g., role of speaker-exclusive models, importance of different modalities, and generalizability. This framework illustrates the different facets of analysis to be considered while performing multimodal sentiment analysis and, hence, serves as a new benchmark for future research in this emerging field.

View on arXiv
Comments on this paper