8
94

VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

Jiawei Chen
Janusz Konrad
Prakash Ishwar
Abstract

Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.