ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.07054
17
17

Optimal link prediction with matrix logistic regression

19 March 2018
Nicolai Baldin
Quentin Berthet
ArXivPDFHTML
Abstract

We consider the problem of link prediction, based on partial observation of a large network, and on side information associated to its vertices. The generative model is formulated as a matrix logistic regression. The performance of the model is analysed in a high-dimensional regime under a structural assumption. The minimax rate for the Frobenius-norm risk is established and a combinatorial estimator based on the penalised maximum likelihood approach is shown to achieve it. Furthermore, it is shown that this rate cannot be attained by any (randomised) algorithm computable in polynomial time under a computational complexity assumption.

View on arXiv
Comments on this paper