44
2

Approximate Method of Variational Bayesian Matrix Factorization/Completion with Sparse Prior

Abstract

We derive analytical expression of matrix factorization/completion solution by variational Bayes method, under the assumption that observed matrix is originally the product of low-rank dense and sparse matrices with additive noise. We assume the prior of sparse matrix is Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for derivation of matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of sparse matrix reconstruction in matrix factorization, and completion of missing matrix element in matrix completion.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.