ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05563
16
51

Advancing Connectionist Temporal Classification With Attention Modeling

15 March 2018
Amit Das
Jinyu Li
Rui Zhao
Jiawei Liu
ArXivPDFHTML
Abstract

In this study, we propose advancing all-neural speech recognition by directly incorporating attention modeling within the Connectionist Temporal Classification (CTC) framework. In particular, we derive new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we utilize content information extracted from a network representing an implicit language model. Finally, we introduce vector based attention weights that are applied on context vectors across both time and their individual components. We evaluate our system on a 3400 hours Microsoft Cortana voice assistant task and demonstrate that our proposed model consistently outperforms the baseline model achieving about 20% relative reduction in word error rates.

View on arXiv
Comments on this paper