ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04790
43
18
v1v2 (latest)

Enhanced Word Representations for Bridging Anaphora Resolution

13 March 2018
Yufang Hou
ArXiv (abs)PDFHTML
Abstract

Most current models of word representations(e.g.,GloVe) have successfully captured fine-grained semantics. However, semantic similarity exhibited in these word embeddings is not suitable for resolving bridging anaphora, which requires the knowledge of associative similarity (i.e., relatedness) instead of semantic similarity information between synonyms or hypernyms. We create word embeddings (embeddings_PP) to capture such relatedness by exploring the syntactic structure of noun phrases. We demonstrate that using embeddings_PP alone achieves around 30% of accuracy for bridging anaphora resolution on the ISNotes corpus. Furthermore, we achieve a substantial gain over the state-of-the-art system (Hou et al., 2013) for bridging antecedent selection.

View on arXiv
Comments on this paper