ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04488
14
12

Concept2vec: Metrics for Evaluating Quality of Embeddings for Ontological Concepts

12 March 2018
Faisal Alshargi
Saeedeh Shekarpour
Tommaso Soru
A. Sheth
    3DV
ArXivPDFHTML
Abstract

Although there is an emerging trend towards generating embeddings for primarily unstructured data and, recently, for structured data, no systematic suite for measuring the quality of embeddings has been proposed yet. This deficiency is further sensed with respect to embeddings generated for structured data because there are no concrete evaluation metrics measuring the quality of the encoded structure as well as semantic patterns in the embedding space. In this paper, we introduce a framework containing three distinct tasks concerned with the individual aspects of ontological concepts: (i) the categorization aspect, (ii) the hierarchical aspect, and (iii) the relational aspect. Then, in the scope of each task, a number of intrinsic metrics are proposed for evaluating the quality of the embeddings. Furthermore, w.r.t. this framework, multiple experimental studies were run to compare the quality of the available embedding models. Employing this framework in future research can reduce misjudgment and provide greater insight about quality comparisons of embeddings for ontological concepts. We positioned our sampled data and code at https://github.com/alshargi/Concept2vec under GNU General Public License v3.0.

View on arXiv
Comments on this paper