ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01261
14
15

AntShield: On-Device Detection of Personal Information Exposure

3 March 2018
A. Shuba
Evita Bakopoulou
Milad Asgari Mehrabadi
Hieu Le
David Choffnes
A. Markopoulou
ArXivPDFHTML
Abstract

Mobile devices have access to personal, potentially sensitive data, and there is a growing number of applications that transmit this personally identifiable information (PII) over the network. In this paper, we present the AntShield system that performs on-device packet-level monitoring and detects the transmission of such sensitive information accurately and in real-time. A key insight is to distinguish PII that is predefined and is easily available on the device from PII that is unknown a priori but can be automatically detected by classifiers. Our system not only combines, for the first time, the advantages of on-device monitoring with the power of learning unknown PII, but also outperforms either of the two approaches alone. We demonstrate the real-time performance of our prototype as well as the classification performance using a dataset that we collect and analyze from scratch (including new findings in terms of leaks and patterns). AntShield is a first step towards enabling distributed learning of private information exposure.

View on arXiv
Comments on this paper