ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.01128
43
241

Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Adversarial Examples

3 March 2018
Minhao Cheng
Jinfeng Yi
Pin-Yu Chen
Huan Zhang
Cho-Jui Hsieh
    SILM
    AAML
ArXivPDFHTML
Abstract

Crafting adversarial examples has become an important technique to evaluate the robustness of deep neural networks (DNNs). However, most existing works focus on attacking the image classification problem since its input space is continuous and output space is finite. In this paper, we study the much more challenging problem of crafting adversarial examples for sequence-to-sequence (seq2seq) models, whose inputs are discrete text strings and outputs have an almost infinite number of possibilities. To address the challenges caused by the discrete input space, we propose a projected gradient method combined with group lasso and gradient regularization. To handle the almost infinite output space, we design some novel loss functions to conduct non-overlapping attack and targeted keyword attack. We apply our algorithm to machine translation and text summarization tasks, and verify the effectiveness of the proposed algorithm: by changing less than 3 words, we can make seq2seq model to produce desired outputs with high success rates. On the other hand, we recognize that, compared with the well-evaluated CNN-based classifiers, seq2seq models are intrinsically more robust to adversarial attacks.

View on arXiv
Comments on this paper