ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00885
150
436
v1v2v3v4v5 (latest)

Essentially No Barriers in Neural Network Energy Landscape

2 March 2018
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
    MoMe
ArXiv (abs)PDFHTML
Abstract

Training neural networks involves finding minima of a high-dimensional non-convex loss function. Knowledge of the structure of this energy landscape is sparse. Relaxing from linear interpolations, we construct continuous paths between minima of recent neural network architectures on CIFAR10 and CIFAR100. Surprisingly, the paths are essentially flat in both the training and test landscapes. This implies that neural networks have enough capacity for structural changes, or that these changes are small between minima. Also, each minimum has at least one vanishing Hessian eigenvalue in addition to those resulting from trivial invariance.

View on arXiv
Comments on this paper