ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00854
19
16

A more globally accurate dimensionality reduction method using triplets

1 March 2018
Ehsan Amid
Manfred K. Warmuth
ArXivPDFHTML
Abstract

We first show that the commonly used dimensionality reduction (DR) methods such as t-SNE and LargeVis poorly capture the global structure of the data in the low dimensional embedding. We show this via a number of tests for the DR methods that can be easily applied by any practitioner to the dataset at hand. Surprisingly enough, t-SNE performs the best w.r.t. the commonly used measures that reward the local neighborhood accuracy such as precision-recall while having the worst performance in our tests for global structure. We then contrast the performance of these two DR method against our new method called TriMap. The main idea behind TriMap is to capture higher orders of structure with triplet information (instead of pairwise information used by t-SNE and LargeVis), and to minimize a robust loss function for satisfying the chosen triplets. We provide compelling experimental evidence on large natural datasets for the clear advantage of the TriMap DR results. As LargeVis, TriMap scales linearly with the number of data points.

View on arXiv
Comments on this paper