ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00116
14
34

Separators and Adjustment Sets in Causal Graphs: Complete Criteria and an Algorithmic Framework

28 February 2018
Benito van der Zander
Maciej Liskiewicz
J. Textor
    CML
ArXivPDFHTML
Abstract

Principled reasoning about the identifiability of causal effects from non-experimental data is an important application of graphical causal models. This paper focuses on effects that are identifiable by covariate adjustment, a commonly used estimation approach. We present an algorithmic framework for efficiently testing, constructing, and enumerating mmm-separators in ancestral graphs (AGs), a class of graphical causal models that can represent uncertainty about the presence of latent confounders. Furthermore, we prove a reduction from causal effect identification by covariate adjustment to mmm-separation in a subgraph for directed acyclic graphs (DAGs) and maximal ancestral graphs (MAGs). Jointly, these results yield constructive criteria that characterize all adjustment sets as well as all minimal and minimum adjustment sets for identification of a desired causal effect with multivariate exposures and outcomes in the presence of latent confounding. Our results extend several existing solutions for special cases of these problems. Our efficient algorithms allowed us to empirically quantify the identifiability gap between covariate adjustment and the do-calculus in random DAGs and MAGs, covering a wide range of scenarios. Implementations of our algorithms are provided in the R package dagitty.

View on arXiv
Comments on this paper