ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09961
37
48

Classifying Idiomatic and Literal Expressions Using Topic Models and Intensity of Emotions

27 February 2018
Jing Peng
Anna Feldman
Ekaterina Vylomova
ArXiv (abs)PDFHTML
Abstract

We describe an algorithm for automatic classification of idiomatic and literal expressions. Our starting point is that words in a given text segment, such as a paragraph, that are highranking representatives of a common topic of discussion are less likely to be a part of an idiomatic expression. Our additional hypothesis is that contexts in which idioms occur, typically, are more affective and therefore, we incorporate a simple analysis of the intensity of the emotions expressed by the contexts. We investigate the bag of words topic representation of one to three paragraphs containing an expression that should be classified as idiomatic or literal (a target phrase). We extract topics from paragraphs containing idioms and from paragraphs containing literals using an unsupervised clustering method, Latent Dirichlet Allocation (LDA) (Blei et al., 2003). Since idiomatic expressions exhibit the property of non-compositionality, we assume that they usually present different semantics than the words used in the local topic. We treat idioms as semantic outliers, and the identification of a semantic shift as outlier detection. Thus, this topic representation allows us to differentiate idioms from literals using local semantic contexts. Our results are encouraging.

View on arXiv
Comments on this paper