ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06547
27
10

Weighted Linear Discriminant Analysis based on Class Saliency Information

19 February 2018
Lei Xu
Alexandros Iosifidis
Moncef Gabbouj
    FAtt
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose a new variant of Linear Discriminant Analysis to overcome underlying drawbacks of traditional LDA and other LDA variants targeting problems involving imbalanced classes. Traditional LDA sets assumptions related to Gaussian class distribution and neglects influence of outlier classes, that might hurt in performance. We exploit intuitions coming from a probabilistic interpretation of visual saliency estimation in order to define saliency of a class in multi-class setting. Such information is then used to redefine the between-class and within-class scatters in a more robust manner. Compared to traditional LDA and other weight-based LDA variants, the proposed method has shown certain improvements on facial image classification problems in publicly available datasets.

View on arXiv
Comments on this paper