ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06439
  4. Cited By
Local Optimality and Generalization Guarantees for the Langevin
  Algorithm via Empirical Metastability

Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability

18 February 2018
Belinda Tzen
Tengyuan Liang
Maxim Raginsky
ArXivPDFHTML

Papers citing "Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability"

6 / 6 papers shown
Title
Natasha 2: Faster Non-Convex Optimization Than SGD
Natasha 2: Faster Non-Convex Optimization Than SGD
Zeyuan Allen-Zhu
ODL
64
245
0
29 Aug 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
61
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly
  Non-Convex Parameter
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
57
80
0
02 Feb 2017
The Landscape of Empirical Risk for Non-convex Losses
The Landscape of Empirical Risk for Non-convex Losses
Song Mei
Yu Bai
Andrea Montanari
94
312
0
22 Jul 2016
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
1