ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04967
30
87

DESlib: A Dynamic ensemble selection library in Python

14 February 2018
Rafael M. O. Cruz
L. G. Hafemann
R. Sabourin
George D. C. Cavalcanti
ArXivPDFHTML
Abstract

DESlib is an open-source python library providing the implementation of several dynamic selection techniques. The library is divided into three modules: (i) \emph{dcs}, containing the implementation of dynamic classifier selection methods (DCS); (ii) \emph{des}, containing the implementation of dynamic ensemble selection methods (DES); (iii) \emph{static}, with the implementation of static ensemble techniques. The library is fully documented (documentation available online on Read the Docs), has a high test coverage (codecov.io) and is part of the scikit-learn-contrib supported projects. Documentation, code and examples can be found on its GitHub page: https://github.com/scikit-learn-contrib/DESlib.

View on arXiv
Comments on this paper