ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03835
16
148

Edge-Host Partitioning of Deep Neural Networks with Feature Space Encoding for Resource-Constrained Internet-of-Things Platforms

11 February 2018
J. Ko
Taesik Na
M. Amir
Saibal Mukhopadhyay
ArXivPDFHTML
Abstract

This paper introduces partitioning an inference task of a deep neural network between an edge and a host platform in the IoT environment. We present a DNN as an encoding pipeline, and propose to transmit the output feature space of an intermediate layer to the host. The lossless or lossy encoding of the feature space is proposed to enhance the maximum input rate supported by the edge platform and/or reduce the energy of the edge platform. Simulation results show that partitioning a DNN at the end of convolutional (feature extraction) layers coupled with feature space encoding enables significant improvement in the energy-efficiency and throughput over the baseline configurations that perform the entire inference at the edge or at the host.

View on arXiv
Comments on this paper