ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02242
34
24

Full-pulse Tomographic Reconstruction with Deep Neural Networks

2 February 2018
D. R. Ferreira
P. Carvalho
H. Fernandes
ArXiv (abs)PDFHTML
Abstract

Plasma tomography consists in reconstructing the 2D radiation profile in a poloidal cross-section of a fusion device, based on line-integrated measurements along several lines of sight. The reconstruction process is computationally intensive and, in practice, only a few reconstructions are usually computed per pulse. In this work, we trained a deep neural network based on a large collection of sample tomograms that have been produced at JET over several years. Once trained, the network is able to reproduce those results with high accuracy. More importantly, it can compute all the tomographic reconstructions for a given pulse in just a few seconds. This makes it possible to visualize several phenomena -- such as plasma heating, disruptions and impurity transport -- over the course of a discharge.

View on arXiv
Comments on this paper