ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.01812
18
16

Decoding-History-Based Adaptive Control of Attention for Neural Machine Translation

6 February 2018
Junyang Lin
Shuming Ma
Qi Su
Xu Sun
ArXivPDFHTML
Abstract

Attention-based sequence-to-sequence model has proved successful in Neural Machine Translation (NMT). However, the attention without consideration of decoding history, which includes the past information in the decoder and the attention mechanism, often causes much repetition. To address this problem, we propose the decoding-history-based Adaptive Control of Attention (ACA) for the NMT model. ACA learns to control the attention by keeping track of the decoding history and the current information with a memory vector, so that the model can take the translated contents and the current information into consideration. Experiments on Chinese-English translation and the English-Vietnamese translation have demonstrated that our model significantly outperforms the strong baselines. The analysis shows that our model is capable of generating translation with less repetition and higher accuracy. The code will be available at https://github.com/lancopku

View on arXiv
Comments on this paper