ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.09810
18
5

Personalized Survival Prediction with Contextual Explanation Networks

30 January 2018
Maruan Al-Shedivat
Kumar Avinava Dubey
Eric P. Xing
ArXivPDFHTML
Abstract

Accurate and transparent prediction of cancer survival times on the level of individual patients can inform and improve patient care and treatment practices. In this paper, we design a model that concurrently learns to accurately predict patient-specific survival distributions and to explain its predictions in terms of patient attributes such as clinical tests or assessments. Our model is flexible and based on a recurrent network, can handle various modalities of data including temporal measurements, and yet constructs and uses simple explanations in the form of patient- and time-specific linear regression. For analysis, we use two publicly available datasets and show that our networks outperform a number of baselines in prediction while providing a way to inspect the reasons behind each prediction.

View on arXiv
Comments on this paper