ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.07330
44
2

High-throughput, high-resolution registration-free generated adversarial network microscopy

7 January 2018
Hao Zhang
Xinlin Xie
Chunyu Fang
Yicong Yang
Di Jin
Britton Chance Center for Biomedical Photonics
    GAN
    MedIm
ArXivPDFHTML
Abstract

We combine generative adversarial network (GAN) with light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the neural network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. Its capacity has been broadly demonstrated via imaging various types of samples, such as USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single image super-resolution procedure. We also propose an image degrading model to generate low resolution images for training, making our approach free from the complex image registration during training dataset preparation. After a welltrained network being created, this deep learning-based imaging approach is capable of recovering a large FOV (~95 mm2), high-resolution (~1.7 {\mu}m) image at high speed (within 1 second), while not necessarily introducing any changes to the setup of existing microscopes.

View on arXiv
Comments on this paper