ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.07316
24
1

The Hybrid Bootstrap: A Drop-in Replacement for Dropout

22 January 2018
R. Kosar
D. W. Scott
    BDL
ArXivPDFHTML
Abstract

Regularization is an important component of predictive model building. The hybrid bootstrap is a regularization technique that functions similarly to dropout except that features are resampled from other training points rather than replaced with zeros. We show that the hybrid bootstrap offers superior performance to dropout. We also present a sampling based technique to simplify hyperparameter choice. Next, we provide an alternative sampling technique for convolutional neural networks. Finally, we demonstrate the efficacy of the hybrid bootstrap on non-image tasks using tree-based models.

View on arXiv
Comments on this paper