ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.07230
21
44

DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks

22 January 2018
Unaiza Ahsan
Chen Sun
Irfan Essa
    GAN
ArXivPDFHTML
Abstract

We propose an action recognition framework using Gen- erative Adversarial Networks. Our model involves train- ing a deep convolutional generative adversarial network (DCGAN) using a large video activity dataset without la- bel information. Then we use the trained discriminator from the GAN model as an unsupervised pre-training step and fine-tune the trained discriminator model on a labeled dataset to recognize human activities. We determine good network architectural and hyperparameter settings for us- ing the discriminator from DCGAN as a trained model to learn useful representations for action recognition. Our semi-supervised framework using only appearance infor- mation achieves superior or comparable performance to the current state-of-the-art semi-supervised action recog- nition methods on two challenging video activity datasets: UCF101 and HMDB51.

View on arXiv
Comments on this paper