ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.06669
33
7

A frequency domain analysis of the error distribution from noisy high-frequency data

20 January 2018
Jinyuan Chang
A. Delaigle
P. Hall
C. Tang
ArXiv (abs)PDFHTML
Abstract

Data observed at high sampling frequency are typically assumed to be an additive composite of a relatively slow-varying continuous-time component, a latent stochastic process or a smooth random function, and measurement error. Supposing that the latent component is an It\^{o} diffusion process, we propose to estimate the measurement error density function by applying a deconvolution technique with appropriate localization. Our estimator, which does not require equally-spaced observed times, is consistent and minimax rate optimal. We also investigate estimators of the moments of the error distribution and their properties, propose a frequency domain estimator for the integrated volatility of the underlying stochastic process, and show that it achieves the optimal convergence rate. Simulations and a real data analysis validate our analysis.

View on arXiv
Comments on this paper