ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.06353
36
111
v1v2v3v4 (latest)

Cross Corpus Speech Emotion Classification- An Effective Transfer Learning Technique

19 January 2018
S. Latif
R. Rana
Shahzad Younis
Junaid Qadir
J. Epps
ArXiv (abs)PDFHTML
Abstract

Cross-corpus speech emotion recognition can be a useful transfer learning technique to build a robust speech emotion recognition system by leveraging information from various speech datasets - cross-language and cross-corpus. However, more research needs to be carried out to understand the effective operating scenarios of cross-corpus speech emotion recognition, especially with the utilization of the powerful deep learning techniques. In this paper, we use five different corpora of three different languages to investigate the cross-corpus and cross-language emotion recognition using Deep Belief Networks (DBNs). Experimental results demonstrate that DBNs with generalization power offers better accuracy than a discriminative method based on Sparse Auto Encoder and SVM. Results also suggest that using a large number of languages for training and using a small fraction of target data in training can significantly boost accuracy compared to using the same language for training and testing.

View on arXiv
Comments on this paper