ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.05566
19
2

An Empirical Analysis of Proximal Policy Optimization with Kronecker-factored Natural Gradients

17 January 2018
Jiaming Song
Yuhuai Wu
ArXivPDFHTML
Abstract

In this technical report, we consider an approach that combines the PPO objective and K-FAC natural gradient optimization, for which we call PPOKFAC. We perform a range of empirical analysis on various aspects of the algorithm, such as sample complexity, training speed, and sensitivity to batch size and training epochs. We observe that PPOKFAC is able to outperform PPO in terms of sample complexity and speed in a range of MuJoCo environments, while being scalable in terms of batch size. In spite of this, it seems that adding more epochs is not necessarily helpful for sample efficiency, and PPOKFAC seems to be worse than its A2C counterpart, ACKTR.

View on arXiv
Comments on this paper