ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.05242
31
27
v1v2v3 (latest)

A Bayesian Conjugate Gradient Method

16 January 2018
Jon Cockayne
Chris J. Oates
Ilse C. F. Ipsen
ArXiv (abs)PDFHTML
Abstract

A fundamental task in numerical computation is the solution of large linear systems. The conjugate gradient method is an iterative method which offers rapid convergence to the solution, particularly when an effective preconditioner is employed. However, for more challenging systems a substantial error can be present even after many iterations have been performed. The estimates obtained in this case are of little value unless further information can be provided about the numerical error. In this paper we propose a novel statistical model for this numerical error set in a Bayesian framework. Our approach is a strict generalisation of the conjugate gradient method, which is recovered as the posterior mean for a particular choice of prior. The estimates obtained are analysed with Krylov subspace methods and a contraction result for the posterior is presented. The method is then analysed in a simulation study as well as being applied to a challenging problem in medical imaging.

View on arXiv
Comments on this paper