ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.03331
18
0

Reasoning about Unforeseen Possibilities During Policy Learning

10 January 2018
Craig Innes
A. Lascarides
Stefano V. Albrecht
S. Ramamoorthy
Benjamin Rosman
    LRM
ArXivPDFHTML
Abstract

Methods for learning optimal policies in autonomous agents often assume that the way the domain is conceptualised---its possible states and actions and their causal structure---is known in advance and does not change during learning. This is an unrealistic assumption in many scenarios, because new evidence can reveal important information about what is possible, possibilities that the agent was not aware existed prior to learning. We present a model of an agent which both discovers and learns to exploit unforeseen possibilities using two sources of evidence: direct interaction with the world and communication with a domain expert. We use a combination of probabilistic and symbolic reasoning to estimate all components of the decision problem, including its set of random variables and their causal dependencies. Agent simulations show that the agent converges on optimal polices even when it starts out unaware of factors that are critical to behaving optimally.

View on arXiv
Comments on this paper