ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.02363
8
13

Efficient and Effective Quantum Compiling for Entanglement-based Machine Learning on IBM Q Devices

8 January 2018
Davide Ferrari
Michele Amoretti
ArXivPDFHTML
Abstract

Quantum compiling means fast, device-aware implementation of quantum algorithms (i.e., quantum circuits, in the quantum circuit model of computation). In this paper, we present a strategy for compiling IBM Q -aware, low-depth quantum circuits that generate Greenberger-Horne-Zeilinger (GHZ) entangled states. The resulting compiler can replace the QISKit compiler for the specific purpose of obtaining improved GHZ circuits. It is well known that GHZ states have several practical applications, including quantum machine learning. We illustrate our experience in implementing and querying a uniform quantum example oracle based on the GHZ circuit, for solving the classically hard problem of learning parity with noise.

View on arXiv
Comments on this paper