ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.01797
23
27

Monte Carlo integration with a growing number of control variates

5 January 2018
François Portier
Johan Segers
ArXivPDFHTML
Abstract

It is well known that Monte Carlo integration with variance reduction by means of control variates can be implemented by the ordinary least squares estimator for the intercept in a multiple linear regression model. A central limit theorem is established for the integration error if the number of control variates tends to infinity. The integration error is scaled by the standard deviation of the error term in the regression model. If the linear span of the control variates is dense in a function space that contains the integrand, the integration error tends to zero at a rate which is faster than the square root of the number of Monte Carlo replicates. Depending on the situation, increasing the number of control variates may or may not be computationally more efficient than increasing the Monte Carlo sample size.

View on arXiv
Comments on this paper