ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.06145
6
10

clcNet: Improving the Efficiency of Convolutional Neural Network using Channel Local Convolutions

17 December 2017
Dong-Qing Zhang
ArXivPDFHTML
Abstract

Depthwise convolution and grouped convolution has been successfully applied to improve the efficiency of convolutional neural network (CNN). We suggest that these models can be considered as special cases of a generalized convolution operation, named channel local convolution(CLC), where an output channel is computed using a subset of the input channels. This definition entails computation dependency relations between input and output channels, which can be represented by a channel dependency graph(CDG). By modifying the CDG of grouped convolution, a new CLC kernel named interlaced grouped convolution (IGC) is created. Stacking IGC and GC kernels results in a convolution block (named CLC Block) for approximating regular convolution. By resorting to the CDG as an analysis tool, we derive the rule for setting the meta-parameters of IGC and GC and the framework for minimizing the computational cost. A new CNN model named clcNet is then constructed using CLC blocks, which shows significantly higher computational efficiency and fewer parameters compared to state-of-the-art networks, when being tested using the ImageNet-1K dataset. Source code is available at https://github.com/dqzhang17/clcnet.torch .

View on arXiv
Comments on this paper