ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05084
22
0

Learning to Navigate by Growing Deep Networks

14 December 2017
Thushan Ganegedara
Lionel Ott
F. Ramos
    SSL
ArXiv (abs)PDFHTML
Abstract

Adaptability is central to autonomy. Intuitively, for high-dimensional learning problems such as navigating based on vision, internal models with higher complexity allow to accurately encode the information available. However, most learning methods rely on models with a fixed structure and complexity. In this paper, we present a self-supervised framework for robots to learn to navigate, without any prior knowledge of the environment, by incrementally building the structure of a deep network as new data becomes available. Our framework captures images from a monocular camera and self labels the images to continuously train and predict actions from a computationally efficient adaptive deep architecture based on Autoencoders (AE), in a self-supervised fashion. The deep architecture, named Reinforced Adaptive Denoising Autoencoders (RA-DAE), uses reinforcement learning to dynamically change the network structure by adding or removing neurons. Experiments were conducted in simulation and real-world indoor and outdoor environments to assess the potential of self-supervised navigation. RA-DAE demonstrates better performance than equivalent non-adaptive deep learning alternatives and can continue to expand its knowledge, trading-off past and present information.

View on arXiv
Comments on this paper