ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05042
14
133

A Particle Swarm Optimization-based Flexible Convolutional Auto-Encoder for Image Classification

13 December 2017
Yizhou Sun
Bing Xue
Mengjie Zhang
Gary G. Yen
ArXivPDFHTML
Abstract

Convolutional auto-encoders have shown their remarkable performance in stacking to deep convolutional neural networks for classifying image data during past several years. However, they are unable to construct the state-of-the-art convolutional neural networks due to their intrinsic architectures. In this regard, we propose a flexible convolutional auto-encoder by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional convolutional auto-encoder. We also design an architecture discovery method by using particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed flexible convolutional auto-encoder with much less computational resource and without any manual intervention. We use the designed architecture optimization algorithm to test the proposed flexible convolutional auto-encoder through utilizing one graphic processing unit card on four extensively used image classification datasets. Experimental results show that our work in this paper significantly outperform the peer competitors including the state-of-the-art algorithm.

View on arXiv
Comments on this paper