34
30
v1v2v3v4 (latest)

Continuous-discrete smoothing of diffusions

Marcin Mider
Frank van der Meulen
Abstract

Suppose X is a multivariate diffusion process that is observed discretely in time. At each observation time, a transformation of the state of the process is observed with noise. The smoothing problem consists of recovering the path of the process, consistent with the observations. We derive a novel Markov Chain Monte Carlo algorithm to sample from the exact smoothing distribution. The resulting algorithm is called the Backward Filtering Forward Guiding (BFFG) algorithm. We extend the algorithm to include parameter estimation. The proposed method relies on guided proposals introduced in Schauer et al. (2017). We illustrate its efficiency in a number of challenging problems.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.