36
13

Shape optimization in laminar flow with a label-guided variational autoencoder

Abstract

Computational design optimization in fluid dynamics usually requires to solve non-linear partial differential equations numerically. In this work, we explore a Bayesian optimization approach to minimize an object's drag coefficient in laminar flow based on predicting drag directly from the object shape. Jointly training an architecture combining a variational autoencoder mapping shapes to latent representations and Gaussian process regression allows us to generate improved shapes in the two dimensional case we consider.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.