ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00994
11
51

NEURAghe: Exploiting CPU-FPGA Synergies for Efficient and Flexible CNN Inference Acceleration on Zynq SoCs

4 December 2017
Paolo Meloni
Alessandro Capotondi
Gianfranco Deriu
Michele Brian
Francesco Conti
D. Rossi
L. Raffo
Luca Benini
ArXivPDFHTML
Abstract

Deep convolutional neural networks (CNNs) obtain outstanding results in tasks that require human-level understanding of data, like image or speech recognition. However, their computational load is significant, motivating the development of CNN-specialized accelerators. This work presents NEURAghe, a flexible and efficient hardware/software solution for the acceleration of CNNs on Zynq SoCs. NEURAghe leverages the synergistic usage of Zynq ARM cores and of a powerful and flexible Convolution-Specific Processor deployed on the reconfigurable logic. The Convolution-Specific Processor embeds both a convolution engine and a programmable soft core, releasing the ARM processors from most of the supervision duties and allowing the accelerator to be controlled by software at an ultra-fine granularity. This methodology opens the way for cooperative heterogeneous computing: while the accelerator takes care of the bulk of the CNN workload, the ARM cores can seamlessly execute hard-to-accelerate parts of the computational graph, taking advantage of the NEON vector engines to further speed up computation. Through the companion NeuDNN SW stack, NEURAghe supports end-to-end CNN-based classification with a peak performance of 169 Gops/s, and an energy efficiency of 17 Gops/W. Thanks to our heterogeneous computing model, our platform improves upon the state-of-the-art, achieving a frame rate of 5.5 fps on the end-to-end execution of VGG-16, and 6.6 fps on ResNet-18.

View on arXiv
Comments on this paper