ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.00069
18
27

On the importance of normative data in speech-based assessment

30 November 2017
Z. Noorian
Chloé Pou-Prom
Frank Rudzicz
ArXivPDFHTML
Abstract

Data sets for identifying Alzheimer's disease (AD) are often relatively sparse, which limits their ability to train generalizable models. Here, we augment such a data set, DementiaBank, with each of two normative data sets, the Wisconsin Longitudinal Study and Talk2Me, each of which employs a speech-based picture-description assessment. Through minority class oversampling with ADASYN, we outperform state-of-the-art results in binary classification of people with and without AD in DementiaBank. This work highlights the effectiveness of combining sparse and difficult-to-acquire patient data with relatively large and easily accessible normative datasets.

View on arXiv
Comments on this paper