ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.11417
50
32
v1v2v3v4 (latest)

Scalable synthesis of safety certificates from data with application to learning-based control

30 November 2017
K. P. Wabersich
Melanie Zeilinger
ArXiv (abs)PDFHTML
Abstract

The control of complex systems faces a trade-off between high performance and safety guarantees, which in particular restricts the application of learning-based methods to safety-critical systems. A recently proposed framework to address this issue is the use of a safety controller, which guarantees to keep the system within a safe region of the state space. This paper introduces efficient techniques for the synthesis of a safe set and control law, which offer improved scalability properties by relying on approximations based on convex optimization problems. The first proposed method requires only an approximate linear system model and Lipschitz continuity of the unknown nonlinear dynamics. The second method extends the results by showing how a Gaussian process prior on the unknown system dynamics can be used in order to reduce conservatism of the resulting safe set. We demonstrate the results with numerical examples, including an autonomous convoy of vehicles.

View on arXiv
Comments on this paper