ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.10705
30
9

Speaker-Sensitive Dual Memory Networks for Multi-Turn Slot Tagging

29 November 2017
Young-Bum Kim
Sungjin Lee
R. Sarikaya
ArXivPDFHTML
Abstract

In multi-turn dialogs, natural language understanding models can introduce obvious errors by being blind to contextual information. To incorporate dialog history, we present a neural architecture with Speaker-Sensitive Dual Memory Networks which encode utterances differently depending on the speaker. This addresses the different extents of information available to the system - the system knows only the surface form of user utterances while it has the exact semantics of system output. We performed experiments on real user data from Microsoft Cortana, a commercial personal assistant. The result showed a significant performance improvement over the state-of-the-art slot tagging models using contextual information.

View on arXiv
Comments on this paper