ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.09357
35
168

Generative Adversarial Network for Abstractive Text Summarization

26 November 2017
Linqing Liu
Yao Lu
Min Yang
Qiang Qu
Jia Zhu
Hongyan Li
    GAN
ArXivPDFHTML
Abstract

In this paper, we propose an adversarial process for abstractive text summarization, in which we simultaneously train a generative model G and a discriminative model D. In particular, we build the generator G as an agent of reinforcement learning, which takes the raw text as input and predicts the abstractive summarization. We also build a discriminator which attempts to distinguish the generated summary from the ground truth summary. Extensive experiments demonstrate that our model achieves competitive ROUGE scores with the state-of-the-art methods on CNN/Daily Mail dataset. Qualitatively, we show that our model is able to generate more abstractive, readable and diverse summaries.

View on arXiv
Comments on this paper