ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.08901
19
3

Supervised Hashing with End-to-End Binary Deep Neural Network

24 November 2017
Dang-Khoa Le Tan
Thanh-Toan Do
Ngai-man Cheung
    MQ
ArXivPDFHTML
Abstract

Image hashing is a popular technique applied to large scale content-based visual retrieval due to its compact and efficient binary codes. Our work proposes a new end-to-end deep network architecture for supervised hashing which directly learns binary codes from input images and maintains good properties over binary codes such as similarity preservation, independence, and balancing. Furthermore, we also propose a new learning scheme that can cope with the binary constrained loss function. The proposed algorithm not only is scalable for learning over large-scale datasets but also outperforms state-of-the-art supervised hashing methods, which are illustrated throughout extensive experiments from various image retrieval benchmarks.

View on arXiv
Comments on this paper