19
14

Kullback-Leibler Principal Component for Tensors is not NP-hard

Abstract

We study the problem of nonnegative rank-one approximation of a nonnegative tensor, and show that the globally optimal solution that minimizes the generalized Kullback-Leibler divergence can be efficiently obtained, i.e., it is not NP-hard. This result works for arbitrary nonnegative tensors with an arbitrary number of modes (including two, i.e., matrices). We derive a closed-form expression for the KL principal component, which is easy to compute and has an intuitive probabilistic interpretation. For generalized KL approximation with higher ranks, the problem is for the first time shown to be equivalent to multinomial latent variable modeling, and an iterative algorithm is derived that resembles the expectation-maximization algorithm. On the Iris dataset, we showcase how the derived results help us learn the model in an \emph{unsupervised} manner, and obtain strikingly close performance to that from supervised methods.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.