ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.07778
30
16
v1v2v3 (latest)

Detecting independence of random vectors: generalized distance covariance and Gaussian covariance

21 November 2017
Bjorn Bottcher
Martin Keller-Ressel
R. Schilling
ArXiv (abs)PDFHTML
Abstract

Distance covariance is a quantity to measure the dependence of two random vectors. We show that the original concept introduced and developed by Sz\'{e}kely, Rizzo and Bakirov can be embedded into a more general framework based on symmetric L\'{e}vy measures and the corresponding real-valued continuous negative definite functions. The L\'{e}vy measures replace the weight functions used in the original definition of distance covariance. All essential properties of distance covariance are preserved in this new framework. From a practical point of view this allows less restrictive moment conditions on the underlying random variables and one can use other distance functions than Euclidean distance, e.g. Minkowski distance. Most importantly, it serves as the basic building block for distance multivariance, a quantity to measure and estimate dependence of multiple random vectors, which is introduced in a follow-up paper [Distance Multivariance: New dependence measures for random vectors (submitted). Revised version of arXiv: 1711.07775v1] to the present article.

View on arXiv
Comments on this paper