ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.06771
27
77

Approximate Gradient Coding via Sparse Random Graphs

17 November 2017
Zachary B. Charles
Dimitris Papailiopoulos
J. Ellenberg
ArXivPDFHTML
Abstract

Distributed algorithms are often beset by the straggler effect, where the slowest compute nodes in the system dictate the overall running time. Coding-theoretic techniques have been recently proposed to mitigate stragglers via algorithmic redundancy. Prior work in coded computation and gradient coding has mainly focused on exact recovery of the desired output. However, slightly inexact solutions can be acceptable in applications that are robust to noise, such as model training via gradient-based algorithms. In this work, we present computationally simple gradient codes based on sparse graphs that guarantee fast and approximately accurate distributed computation. We demonstrate that sacrificing a small amount of accuracy can significantly increase algorithmic robustness to stragglers.

View on arXiv
Comments on this paper