ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.06636
22
10

Segmenting Brain Tumors with Symmetry

17 November 2017
Hejia Zhang
Xia Zhu
Theodore L. Willke
ArXivPDFHTML
Abstract

We explore encoding brain symmetry into a neural network for a brain tumor segmentation task. A healthy human brain is symmetric at a high level of abstraction, and the high-level asymmetric parts are more likely to be tumor regions. Paying more attention to asymmetries has the potential to boost the performance in brain tumor segmentation. We propose a method to encode brain symmetry into existing neural networks and apply the method to a state-of-the-art neural network for medical imaging segmentation. We evaluate our symmetry-encoded network on the dataset from a brain tumor segmentation challenge and verify that the new model extracts information in the training images more efficiently than the original model.

View on arXiv
Comments on this paper