ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05186
22
4

False Positive and Cross-relation Signals in Distant Supervision Data

14 November 2017
Anca Dumitrache
Lora Aroyo
Chris Welty
ArXivPDFHTML
Abstract

Distant supervision (DS) is a well-established method for relation extraction from text, based on the assumption that when a knowledge-base contains a relation between a term pair, then sentences that contain that pair are likely to express the relation. In this paper, we use the results of a crowdsourcing relation extraction task to identify two problems with DS data quality: the widely varying degree of false positives across different relations, and the observed causal connection between relations that are not considered by the DS method. The crowdsourcing data aggregation is performed using ambiguity-aware CrowdTruth metrics, that are used to capture and interpret inter-annotator disagreement. We also present preliminary results of using the crowd to enhance DS training data for a relation classification model, without requiring the crowd to annotate the entire set.

View on arXiv
Comments on this paper