ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.04934
17
65

Statistically Optimal and Computationally Efficient Low Rank Tensor Completion from Noisy Entries

14 November 2017
Dong Xia
M. Yuan
Cun-Hui Zhang
ArXivPDFHTML
Abstract

In this article, we develop methods for estimating a low rank tensor from noisy observations on a subset of its entries to achieve both statistical and computational efficiencies. There have been a lot of recent interests in this problem of noisy tensor completion. Much of the attention has been focused on the fundamental computational challenges often associated with problems involving higher order tensors, yet very little is known about their statistical performance. To fill in this void, in this article, we characterize the fundamental statistical limits of noisy tensor completion by establishing minimax optimal rates of convergence for estimating a kkkth order low rank tensor under the general ℓp\ell_pℓp​ (1≤p≤21\le p\le 21≤p≤2) norm which suggest significant room for improvement over the existing approaches. Furthermore, we propose a polynomial-time computable estimating procedure based upon power iteration and a second-order spectral initialization that achieves the optimal rates of convergence. Our method is fairly easy to implement and numerical experiments are presented to further demonstrate the practical merits of our estimator.

View on arXiv
Comments on this paper